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Abstract. We use a fluctuating hydrodynamic approach to calculate the orientation fluctuations correlation
functions of a thermotropic nematic liquid crystal in a nonequilibrium state induced by a stationary
heat flux. Since in this nonequilibrium stationary state the hydrodynamic fluctuations evolve on three
widely separated times scales, we use a time-scale perturbation procedure in order to partially diagonalize
the hydrodynamic matrix. The wave number and frequency dependence of these orientation correlation
functions is evaluated and their explicit functional form on position is also calculated analytically in and
out of equilibrium. We show that for both states these correlations are long-ranged. This result shows that
indeed, even in equilibrium there is long-range orientational order in the nematic, consistently with the
well known properties of these systems.We also calculate the dynamic structure of the fluid in both states
for a geometry consistent with light scattering experiments. We find that as with isotropic simple fluids,
the external temperature gradient introduces an asymmetry in the spectrum shifting its maximum by an
amount proportional to the magnitude of the gradient. This effect may be of the order of 7 per cent. Also,
the width at half height may decrease by a factor of about 10 per cent. Since to our knowledge there are no
experimental results available in the literature to compare with, the predictions of our model calculation
remains to be assessed.

PACS. 24.60.Ky Fluctuation phenomena – 61.30.-v Liquid crystals – 61.30.Gd Orientational order of
liquid crystals; electric and magnetic field effects on order – 78.35.+c Brillouin and Rayleigh scattering;
other light scattering

1 Introduction

Thermal fluctuations in an equilibrium isotropic fluid
always give rise to short-range equal-time correlation func-
tions, except close to a critical point. However, when ex-
ternal gradients are applied, equal-time correlation func-
tions may develop long-range contributions, whose nature
is very different from those in equilibrium. For a variety of
systems in nonequilibrium states it has been shown the-
oretically that the existence of the so called generic scale
invariance is the origin of the long range nature of the cor-
relation functions, [1,2]. For instance, for a simple fluid
under a thermal gradient its structure factor, which de-
termines the intensity of the Rayleigh scattering, diverges
as q−4 for small values of the wave number q. This depen-
dence amounts to an algebraic decay of the density-density
correlation function, a feature that has been verified ex-
perimentally [3,4].

Although studies of the behavior of fluctuations in ne-
matic liquid crystals about nonequilibrium states are more
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scarce, some specific examples have been studied theoret-
ically. Such is the case of the nonequilibrium situations
generated by a static temperature gradient [5], a station-
ary shear flow [6] or by an externally imposed constant
pressure gradient [7–9]. In the first two cases it was found
that the nonequilibrium contributions to the correspond-
ing light scattering spectrum were small, but in the case of
a Poiseuille flow induced by an external pressure gradient
the effect may be quite large. To our knowledge, however,
at present there is no experimental confirmation of these
effects, in spite of the fact that for nematics the scattered
intensity is several orders of magnitude larger than for
ordinary simple fluids [10].

In this work we present a model calculation based on
a fluctuating hydrodynamic description with a time-scale
perturbation formalism to calculate analytically the equal-
time correlation functions of the transverse and longitu-
dinal orientation components of a thermotropic nematic
liquid crystal. We derive the explicit space dependence of
these quantities and show that they exhibit long-range or-
der not only in equilibrium, but also in the nonequilibrium
state induced when the liquid is subjected to a heat flux in-
duced by a stationary thermal gradient. We also evaluate
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the effect of the thermal gradient on the dynamic structure
factor of the fluid. However, since to our knowledge there
are no experimental results available in the literature for
light scattering from a nematic in this steady state, to es-
timate the predictions of our model we used experimental
parameter values similar to those used in light scattering
experiments for an isotropic simple fluid. In this way the
effect of this long-range behavior on the dynamic struc-
ture factor of the fluid is examined for a geometry used
in light scattering experiments. We find that the external
gradient introduces an asymmetry of the spectrum shift-
ing its maximum towards negative frequency intervals by
an amount proportional to the magnitude of the gradient
which may be of the order of ∼7%. Also, the width at half
height may decrease by a factor of ∼10%.

2 Model and basic equations

Consider a thermotropic nematic liquid crystal layer of
thickness d confined between two parallel plates main-
tained at the uniform temperatures T1 and T2, respec-
tively, in a homeotropic arrangement as depicted in Fig-
ure 1. The transverse dimensions of the cell along the x
and y directions are large compared to d. The hydrody-
namic state of the nematic is specified by the velocity
field, −→v (−→r , t), the unit vector defining the local symme-
try axis (director field), n̂ (−→r , t), the pressure, p (−→r , t) and
the temperature, T (−→r , t). We assume that the nematic
has reached a stationary state characterized by Tss, pss

and n̂ss = êz, without convection, e.g., −→v ss = 0. By sym-
metry pss and Tss may only depend on z and if we neglect
the variation of thermal conductivity with z, the station-
ary state is defined by the solution of the equations for pss,
ρss and Tss, which are obtained from the general nemato-
dynamic equations for this geometry, see Appendix in ref-
erence [9]. As a result, a linear stationary temperature pro-
file is established in the cell, Tss (z) = T0

(
1 + Bz

)
, where

T0 = (T1 + T2) /2 and B = β/d with β = d (dTss/dz) /T0.
We want to describe the dynamics of the sponta-

neous thermal (hydrodynamic) fluctuations, δp (−→r , t) =
p (−→r , t) − pss, etc., around this stationary state. A com-
plete set of stochastic equations for the space-time evo-
lution of these fluctuations is obtained by linearizing the
general hydrodynamic equations [9,11,12] and by using
the fluctuating hydrodynamics formalism of Landau and
Lifshitz [13]. In this work we will only calculate correla-
tion functions in the bulk of the nematic, that is, for points−→r and −→r ′ with z and z′ far away from the boundaries,
which means, |z − z′| � d and |z + z′| � d. Moreover,
since the Cartesian components of the director and ve-
locity fields turn out to be strongly coupled, it will be
convenient to work in a representation where this cou-
pling is minimum. This is accomplished by defining the
transverse component of the director fluctuating field as
its projection along the perpendicular direction to the−→
k − n̂ss plane, i.e., δñ1 = k−1

⊥ n̂ss · (
−→
k × δ−̃→n ), where

k⊥ =
(
k2

x + k2
y

)1/2, and the upper tilde denotes the space-
Fourier transform of the fields. Similarly, the longitudinal

Fig. 1. Schematic representation of a plane homeotropic cell
with a constant thermal gradient along z direction. The inset
shows the scattering geometry. The scattering angle is θ.

component, δñ3 = k−1−→k · δ−̃→n , is its projection in the
k − n̂ss plane.

In previous work we have shown that for a ther-
motropic nematic the modes associated with the direc-
tor relaxation are much slower than the visco-heat and
sound modes [9]. For typical material parameter values
of a thermotropic nematic the ratio of these relaxation
times is τorientation/τvisco−heat ∼ 105. Therefore, trans-
verse and longitudinal director fluctuations relax to equi-
librium much more slowly than fluctuations in tempera-
ture, pressure and velocity fields. Actually, the existence
of widely separated time-scales may be exploited to elim-
inate the fast variables from the general dynamic equa-
tions obtaining a reduced description in which only the
slow variables are involved. The time scaling perturbation
method introduced by Geigenmüller et al. [15,16] may be
implemented in order to diminish the couplings between
nematodynamic fluctuations. It allows us to find, on the
slow time-scales, a contracted description in terms of the
slow variables only with a reduced dynamic matrix which
can be constructed by a perturbation procedure.

By using this method it can be shown that in the
slow time-scale, director fluctuations δñ1 and δñ3 obey
the stochastic equations [17],

∂tδñµ = −ωµ

(−→
k

)
δñµ − σ̃µ,

µ = 1 transverse, 3 longitudinal, (1)

where we have introduced the following abbreviations

ω1

(−→
k

)
=

1
γ1

(
K2k

2
⊥ + K3k

2
z

)
[

1 +
1
4

γ1 (1 + λ)2 k2
z

ν2k2
⊥ + ν3k2

z

]

,

(2)

ω3

(
�k
)

=
1
γ1

(
K1k

2
⊥ + K3k

2
z

)
{

1

+
1
4

γ1

[
(1 + λ) k2

z + (1 − λ) k2
⊥

]2

ν3k4
⊥ + 2 (ν1 + ν2 − ν3) k2

⊥k2
z + ν3k4

z

}

.

(3)
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The fluctuating sources σ̃µ are defined as

σ̃1 =
1

k⊥

[
kxΥ̃y − kyΥ̃x

+
1
2

(1 + λ) kz

ν2k2
⊥ + ν3k2

z

(
kxkjΣ̃yj − kykjΣ̃yj

)]
, (4)

σ̃3 =
1
k

[
kxΥ̃x + ky Υ̃y

+
1
2

(1 + λ) k2
z + (1 − λ) k2

⊥
ν3k4

⊥ + 2 (ν1 + ν2 − ν3) k2
⊥k2

z + ν3k4
z

×
(
k2kjΣ̃zj − kzkikjΣ̃ij

)]
, (5)

where λ = γ1/γ2 is a non dissipative coefficient associ-
ated with director relaxation, γ1 and γ2 being orienta-
tional viscosities; K1, K2 and K3 are the splay, twist and
bend elastic constants, respectively; and ν1, ν2 and ν3 are
three shear viscosity coefficients. The stochastic compo-
nents of the quasi-current of the director field and the
stress tensor, Υi and Σij , respectively, are zero averaged
〈Υi〉 = 〈Σij〉 = 0 and in equilibrium they satisfy the fluc-
tuation dissipation relations [9]

〈Υi (−→r , t)Υj (−→r ′, t′)〉 = 2kBT
1
γ1

δ⊥ijδ (−→r −−→r ′) δ (t − t′) ,

(6)
〈Σij (−→r , t)Σlm (−→r ′, t′)〉=2kBTνijlmδ (−→r −−→r ′) δ (t − t′) ,

(7)
where kB is Boltzmann’s constant, T is the equilibrium
temperature of the nematic, δ⊥ij = δij − nins is a pro-
jection operator and νijlm is the viscous tensor as given
in reference [9]. Relations (6) and (7) describe stationary
Gaussian Markov processes.

Now, we will assume that in the non-equilibrium
steady state the fluctuation dissipation relations for Υi

and Σij can be obtained from equations (6) and (7)
by replacing the equilibrium temperature T by the local
z-dependent stationary temperature Tss (z). This assump-
tion leads to

〈
Υ̂i

(−→
k , ω

)
Υ̂j

(−→
k ′, ω′

)〉

ss
= 2 (2π)4 kBT0

1
γ1

δ⊥ij

×
(

1 + iB
∂

∂kz

)
δ
(−→

k +
−→
k ′

)
δ (ω + ω′) , (8)

〈
Σ̂ij

(−→
k , ω

)
Σ̂lm

(−→
k ′, ω′

)〉

ss
= 2 (2π)4 kBT0νijlm

×
(

1 + iB
∂

∂kz

)
δ
(−→

k +
−→
k ′

)
δ (ω + ω′) . (9)

3 Orientational correlation functions

The space-time Fourier transform of equation (1) is
δn̂µ(�k, ω) = [−iω + ωµ(�k)]−1σ̂µ(�k, ω) and the di-
rector auto-correlation functions X̂µµ(

−→
k ,

−→
k ′; ω, ω′) =

〈δn̂µ(
−→
k , ω)δn̂µ(

−→
k ′, ω′)〉ss can be constructed in terms of

the corresponding fluctuation-dissipation relations for σ̂1

and σ̂3,

X̂µµ =

〈
σ̂µ

(−→
k , ω

)
σ̂µ

(−→
k ′, ω′

)〉

ss[
−iω + ωµ

(−→
k

)] [
−iω′ + ωµ

(−→
k ′

)] , (10)

where no summation over the repeated index µ is im-
plied. In these equations the caret denotes the space-time
Fourier transform of a field. The fluctuation-dissipation
relations obeyed by σ̂1 and σ̂3 may be found from equa-
tions (8) and (9). By inserting the resulting expressions
into equation (10) we obtain explicit forms for X̂µµ. First
we shall examine the spatial limiting behavior of these
correlations which is given by

Xµµ (−→r ,−→r ′; t, t′) =
1

(2π)8

∫
d
−→
k d

−→
k ′dωdω′ei

(−→
k ·�r+

−→
k ′·−→r ′−ωt−ω′t′

)

× X̂µµ

(−→
k ,

−→
k ′; ω, ω′

)
, (11)

when (t′−t) −→ 0. Since the calculation of X11 and X33 is
formally the same, we will only describe the procedure for
X11. Calculating 〈σ̂1(

−→
k , ω)σ̂1(

−→
k ′, ω′)〉ss with the help of

equations (4), (8) and (9), replacing the result into equa-
tion (10) and integrating over ω′,

−→
k ′ and ω, we find that

X11 (−→r ,−→r ′; t, t′) = X
(1)
11 (−→r ,−→r ′; t, t′)+X

(2)
11 (−→r ,−→r ′; t, t′) ,

(12)
where

X
(1)
11 = −kBTss (z)

(2π)3

∫
d�k

ei�k·(−→r −−→r ′)−|t−t′|ω1(�k)

K2k2
⊥ + K3k2

z

(13)

and

X
(2)
11 = − ikBT0B

(2π)3 γ1

∫
d�kkz

[

− γ1K3

(K2k2
⊥ + K3k2

z)2

− 2 |t − t′| b1

(
�k
) ]

ei�k·(−→r −−→r ′)−|t−t′|ω1(�k). (14)

Here we have considered t′ > t and defined

b1

(
�k
)

=
(

1 + λ

2

)2
γ1ν2k

2
⊥

(ν2k2
⊥ + ν3k2

z)2

+
K3

K2k2
⊥ + K3k2

z

[

1 +
1
4

γ1 (1 + λ)2 k2
z

ν2k2
⊥ + ν3k2

z

]

. (15)

From equations (13) and (14) we can find the spatial range
order of transverse director fluctuations by considering the
limiting behavior at small times |t − t′| or large distances
|−→r −−→r ′|, that is, when ξ = K |t − t′| /ν |−→r −−→r ′|2 � 1,
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which corresponds to the limit of static correlation func-
tions. In this limit we find

lim
ξ→0

|X11| =
kBTss (z)

4π (K2K3)
1/2

× 1
[
|−→r ⊥ −−→r ′

⊥|2 + K2
K3

(z − z′)2
]1/2

×
[
1 +

(
dTss

dz

)
z − z′

2Tss (z)

]
, (16)

where |−→r ⊥ −−→r ′
⊥|2 = (x − x′)2 + (y − y′)2.

Similarly, for the longitudinal director fluctuations we
obtain

lim
ξ→0

|X33| =
kBTss (z)

4π (K1 − K3)

⎧
⎪⎨

⎪⎩

1
|−→r −−→r ′|

− (K3/K1)
1/2

[
|−→r ⊥ −−→r ′

⊥|2 + K1
K3

(z − z′)2
]1/2

⎫
⎪⎬

⎪⎭

×
[
1 +

(
dTss

dz

)
z − z′

2Tss (z)

]
. (17)

Note that in equilibrium, B = 0, Tss (z) = T , a constant,
and the transverse orientational correlation functions re-
duces to

lim
ξ→0

|Xeq
11 | =

kBT

4π (K2K3)
1/2

1
[
|−→r ⊥ −−→r ′

⊥|2 + K2
K3

(z − z′)2
]1/2

, (18)

while the corresponding correlation function for the lon-
gitudinal director components is

lim
ξ→0

|Xeq
33 | =

kBT

4π (K1 − K3)

⎧
⎪⎨

⎪⎩

1
|−→r −−→r ′|

− (K3/K1)
1/2

[
|−→r ⊥ −−→r ′

⊥|2 + K1
K3

(z − z′)2
]1/2

⎫
⎪⎬

⎪⎭
. (19)

Note that both Xeq
11 and Xeq

33 are long ranged as could have
been anticipated due to the well known property of a ne-
matic which spontaneously exhibits a macroscopic orien-
tational order. They decay algebraically as |−→r −−→r ′|−1.
In Figure 2 we plot the normalized static correlation in
equilibrium X

eq

11 ≡ 4πd (K2K3)
1/2 Xeq

11/kBT0 for x − x′ =
y − y′ = z = 0, T = T0 and as a function of normalized
distance z′/d. In the stationary state, B �= 0, the behavior
of both correlations is modified by the presence of a term
proportional to the temperature gradient which behaves

Fig. 2. (- - -) Decay of X
eq
11 as a function of z′/d. (—–) Decay

of X11 as function of z′/d for β′ = 0.5. The elastic constants
values are K2 = 4.4 × 10−7 dyn , K3 = 8.9 × 10−7 dyn.

as |−→r −−→r ′|0, that is, which does not decay, in the di-
rection of the temperature gradient. This is also depicted
in Figure 2, where we plot the normalized static correla-
tion X11 ≡ 4πd (K2K3)

1/2
X11/kBT0 for the same condi-

tions as in the equilibrium case and a value of the nor-
malized thermal gradient β′ = dT−1

0 (dTss/dz) = 0.5 > 0.
Note that because of the presence of dTss/dz, X11 be-
comes asymmetric. When compared to its equilibrium
value, correlations increase in the direction of lower tem-
peratures and decrease in the opposite direction. Indeed,
for a plate separation d = 10−2 cm, the difference be-
tween both curves becomes significant for z′/d ∼ 10−1.
This means that the wavevectors sensitive to this differ-
ence are of the order of q ∼ 103 cm−1. Since for light
scattering the wavevector k and the scattering angle θ are
related by q = 2qi sin θ/2, where qi ∼ 105cm−1 is the inci-
dent wave number, this implies very low scattering angles
θ ∼ 0.1◦. A quantitative evaluation of this nonequilibrium
effect on a measurable property will be discussed in the
next section for the structure factor of the fluid.

4 Light scattering spectrum

As an application of the previous theory we now calculate
the light scattering spectrum of the nematic in the sta-
tionary state and for the scattering geometry defined in
Figure 1. For a nematic, dielectric tensor fluctuations come
mainly from director fluctuations, and for the present
model the spectral intensity of the scattered light is pro-
portional to the dynamic structure factor

S (−→q , ω) = −ε2
a cos2 θ

Vsts
Re {〈δn̂1 (−→q , ω) δn̂1 (−−→q ,−ω)〉} ,

(20)
where Vs and ts are the scattering volume and scattering
time, respectively, −→q = −→q i − −→q s is the scattering vector
(qy = 0) and ω = ωs − ωi is the frequency shift. εa =
ε‖ − ε⊥ denotes the dielectric constant anisotropy. Eval-
uating this expression with the help of equations (8), (9)
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we obtain

S (−→q , ω) =
2ε2

akBT0 cos2 θ

γ1

α (−→q )
ω2 + ω2

1 (−→q )

{

1

− 1
T0

(
dTss

dz

)
2ωqzβ (−→q )

ω2 + ω2
1 (−→q )

}
. (21)

In this result we have considered the spectrum produced
by a scattering volume located at the center of the cell.
The nonequilibrium contribution has been written up to
the smallest power of the wave number q, that is, up to the
leading term in the hydrodynamic limit q → 0, ω1 (−→q ) is
given by equation (2) and the functions α (−→q ) and β (−→q )
contain angular information through

α (−→q ) = 1 +
(

1 + λ

2

)2
γ1q

2
z

ν2q2
x + ν3q2

z

(22)

and

β (−→q )=
1
γ1

[

K3α (−→q ) +
(
K2q

2
x + K3q

2
z

) γ1ν2q
2
x

(ν2q2
x + ν3q2

z)2

]

.

(23)
In equilibrium, equation (21) reduces to

Seq (−→q , ω) =
2ε2

akBT cos2 θ

γ1

α (−→q )
ω2 + ω2

1 (−→q )
, (24)

which behaves as q−4. This dependence is responsible for
the well known long-range order spatial behavior of the
orientational correlations exhibited spontaneously by a ne-
matic in equilibrium. On the other hand, the nonequilib-
rium contribution is

Sneq (−→q , ω) = −2ε2
akB sin2 θ

γ1

(
dTss

dz

)
2ωqzα (−→q )β (−→q )

[ω2 + ω2
1 (−→q )]2

,

(25)
which also shows a long range-order decaying as q−5. Note
that close to equilibrium the size of the shift is indeed pro-
portional to dTss/dz. Its odd dependence on ω introduces
an asymmetry in the shape of the structure factor, shifting
the maximum towards the region of negative values of ω,
as shown in Figure 3.

For a fixed scattering vector −→q , we define the dimen-
sionless dynamic structure factor, S0 (ω0), in terms of the
normalized thermal gradient β′ = dT−1

0 (dTss/dz) and the
normalized frequency ω0 = ω/ω1 (−→q ), by

S0 (ω0) =
S (−→q , ω)

Seq (−→q , 0)
=

1
1 + ω2

0

{
1 − β′ 2Aω0

1 + ω2
0

}
(26)

where A = qzβ (−→q ) /ω1 (−→q ) d. In Figure 3 we compare
S0 (ω0) and Seq

0 (ω0) for low scattering angles, θ ∼ 0.1◦,
ki ∼ 105 cm−1, β′ = 0.5 and typical values of material
parameters of a thermotropic nematic [19]. From this re-
sult it follows that the increase of the maximum is about
7% and that the decrease in the half width at half height
is 10%. This shows that the nonequilibrium state may in-
duce changes in the dynamic structure factor which might
be detected experimentally.

Fig. 3. (- - -) Normalized structure factor at equilibrium
Seq

0 (ω0). (—–) Nonequilibrium structure factor S0 (ω0). We
use β′ = 0.5, d = 10−1 cm, θ ∼ 0.1◦, ki ∼ 105 cm−1. The
values of the elastic constants are the same as in Figure 2,
ν2 = 0.41 poise, ν3 = 0.24 poise, γ1 = 1.03 poise, λ = 1.03.

5 Discussion

We have shown theoretically that the orientation corre-
lation functions for a nematic liquid crystal exhibit long-
range order both, in equilibrium and for a steady state
induced by an external thermal gradient. We also esti-
mated the influence of the stationary heat flux on the light
scattering spectrum of a thermotropic nematic. The anal-
ysis carried out in this work included only the orientation
correlation functions and the model has been constructed
so that it corresponds to an experimental arrangement
appropriate to detect the so called mode 2 of the spec-
trum [10]. However, it should be emphasized that this
is a model calculation and since to our knowledge there
are no experimental results to compare with, the correct-
ness of our choice of experimental parameters such as d, θ
or β′, remains to be assessed. However, as found in other
nonequilibrium states for liquid crystals [9], their magni-
tude suggests that they might be experimentally detected.

It is worth pointing out that in previous work we
have analyzed the effects produced by a nonequilibrium
state induced by a concentration gradient in reference [14].
Other correlation functions such as velocity-velocity or
temperature-temperature may also be calculated by using
the same approach. These correlations turn out to be also
long-ranged in the presence of the thermal gradient as re-
ported in references [17,20]. They are also used to compare
the physical mechanisms responsible for the appearing of
long-range order in stationary states of nematics.

We acknowledge partial financial support from DGAPA-
UNAM IN112503 and from FENOMEC through grant CONA-
CYT 400316-5-G25427E, México.
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252 (2005)

10. H.F. Gleeson, in Handbook of Liquid Crystals, edited by
D. Demus, J. Goodby, G.W. Gray, H.W. Spiess, V. Vill
(Wiley-VCH, Weiheim, 1998)

11. H. Pleiner, H.R. Brand, in Pattern Formation in Liquid
Crystals, edited by A. Buka, L. Kramers (Springer-Verlag,
Berlin, 1996)

12. L.D. Landau, E. Lifshitz, Theory of Elasticity (Pergamon,
New York, 1964), 3rd edn.

13. L.D. Landau, E. Lifshitz, Fluid Dynamics (Pergamon,
New York, 1959), Chap. 17
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